High redshift deuterium abundance

Resolving the tension between quasar and CMB Ω_b measurements

Chung-Chi Lee

DAMTP, University of Cambridge

Dec 30, 2018

Outline

Motivation

Voigt Function

Kramers-Heisenberg Formula

Voigt & K-H

Outline

Motivation

Voigt Function

Kramers-Heisenberg Formula

Voigt & K-H

Motivation

Motivation

Table 4. The sample of D1/H1 measurements considered robust in Pettini et al. (2008) together with updated estimates in the same absorbers and more recent, similarly precise measurements from other absorbers.

Reference	Absorption redshift	$\log(N(HI))$	[X/H]	D I/H I [×10 ⁻⁵]	$100\Omega_b h^2$
Burles & Tytler (1998a)	2.504	17.4 ± 0.07	-2.55 Si	4.00 ± 0.70	1.66 ± 0.18
Pettini & Bowen (2001)	2.076	20.4 ± 0.15	-2.23 Si	1.65 ± 0.35	2.82 ± 0.36
Kirkman et al. (2003)	2.426	19.7 ± 0.04	-2.79 O	2.43 ± 0.35	2.24 ± 0.20
Fumagalli et al. (2011)	3.411	18.0 ± 0.05	-4.20 Si	2.04 ± 0.61	2.49 ± 0.05
Noterdaeme et al. (2012)	2.621	20.5 ± 0.10	-1.99 O	2.80 ± 0.80	2.05 ± 0.35
Cooke et al. (2014), Pettini & Cooke (2012)	3.050	20.392 ± 0.003	-1.92 O	2.51 ± 0.05	2.19 ± 0.02
Cooke et al. (2014), O'Meara et al. (2001)	2.537	19.4 ± 0.01	-1.77 O	2.58 ± 0.15	2.16 ± 0.04
Cooke et al. (2014), Pettini et al. (2008)	2.618	20.3 ± 0.01	-2.40 O	2.53 ± 0.10	2.18 ± 0.03
Cooke et al. (2014)	3.067	20.5 ± 0.01	-2.33 O	2.58 ± 0.07	2.16 ± 0.03
Cooke et al. (2014), O'Meara et al. (2006)	2.702	20.7 ± 0.05	-1.55 O	2.40 ± 0.14	2.25 ± 0.03
Riemer-Sørensen et al. (2015)	3.255	18.1 ± 0.03	-1.87 O	2.45 ± 0.28	2.23 ± 0.16
Balashev et al. (2016)	2.437	19.98 ± 0.01	-2.04 O	1.97 ± 0.33	2.54 ± 0.26
This work	3.572	17.925 ± 0.006	-2.26 O	2.62 ± 0.05	2.14 ± 0.03
Weighted average ¹				2.55 ± 0.03	2.17 ± 0.03
Unweighted average ¹	_		_	2.53 ± 0.17	2.18 ± 0.08
Planck Collaboration et al. (2016)	_	_	_	2.45 ± 0.05	2.225 ± 0.016

The conversion between D1/H1 and $\Omega_b h^2$ is based on nuclear rates from Coc et al. (2015) for standard Big Bang Nucleosynthesis. ¹Without the Balashev et al. (2016) and Noterdaeme et al. (2012) measurements

Figure: Riemer-Sørensen et al. (MNRAS 468, 3239)

D/H measurment

Lyman Series:

$$E_n = \frac{\mu e^4}{2(4\pi\epsilon_0\hbar)^2} \frac{1}{n^2}$$
 and $\mu = \frac{Mm_e}{M+m_e}$,

where n is the principle quantum number, m_e and M are the mass of electron and nucleus.

- \Box Hydrogen and Deuterium: $\mu_H = \frac{1836}{1+1836}$ and $\mu_D = \frac{3670}{1+3670}$
- \Box Lyman $\alpha:~\lambda_H=1215.67$ Å, $\lambda_D=1215.34$ Å

D/H measurment

- Lyman α : $\lambda_H = 1215.67$ Å, $\lambda_D = 1215.34$ Å
- Left: $n_H = 10^{16}/cm^2$, $n_D/n_H = 10^{-3}$ (solid), 10^{-4} (dashed)
- Right: $n_H = 10^{16}$ (dotted), 10^{18} (dashed) and 10^{19} (solid) with $n_D/n_H = 10^{-4}$

Outline

Motivation

Voigt Function

Kramers-Heisenberg Formula

Voigt & K-H

Cross-section of a two-level system:

$$\sigma(\nu) = cf \sqrt{\frac{3\pi\sigma_T}{8}} \phi(\nu) \,,$$

where ν is the incoming photon energy, f is the oscillator strength, $\phi(\nu)$ is the Lorentzian

$$\phi(\nu) = \frac{\Gamma/4\pi^2}{(\nu - \nu_0)^2 + (\Gamma/4\pi)^2},$$

 $E = h\nu_0$, and Γ is the spontaneous decay rate.

- Doppler effect: $\nu_0 \rightarrow \nu_0 \left(1 + \frac{v_z}{c}\right)$
- Boltzmann distribution: $N(v_z) = \frac{exp(-v_z^2/(2kT/m))}{\sqrt{2\pi kT/m}}$

 \blacksquare Intensity Profile: $I_{\nu}=I_{0}e^{-N\alpha_{\nu}}$, and

$$\alpha_{\nu} = \frac{\sqrt{\pi}e^2}{m_e c} \frac{f}{\Delta\nu_D} H(a, u) \,,$$

where
$$\Delta \nu_D = \frac{b\nu_0}{c}$$
, $b = \sqrt{\frac{2kT}{m}}$, $u = \frac{(\nu - \nu_0)}{\Delta \nu_D}$ and $a = \frac{\Gamma}{4\pi \Delta \nu_D}$.
Voigt Function:

$$H(a, u) = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2} dy}{(u-y)^2 + a^2} \,.$$

- Absorption and Voigt Function:
 - $\hfill\square$ Two-level system \Rightarrow Lorentzian profile
 - Convolution of Boltzmann and Lorentzian

Outline

Motivation

Voigt Function

Kramers-Heisenberg Formula

Voigt & K-H

Kramers-Heisenberg formula

$$\frac{d\sigma}{d\Omega} = r_0^2 \left(\frac{\nu'}{\nu}\right) \left| \delta_{if} \bar{\epsilon}^{\alpha} \bar{\epsilon}^{\alpha'} + \frac{2\pi m_e \nu_{nf} \nu_{ni}}{\hbar} \right. \\ \left. \sum_n \left[\frac{(\vec{x} \cdot \bar{\epsilon}^{\alpha'})_{fn} (\vec{x} \cdot \bar{\epsilon}^{\alpha})_{ni}}{\nu_{ni} - \nu - i\Gamma_n/2} + \frac{(\vec{x} \cdot \bar{\epsilon}^{\alpha})_{fn} (\vec{x} \cdot \bar{\epsilon}^{\alpha'})_{ni}}{\nu_{ni} + \nu'} \right] \right|^2,$$

where $\nu(\epsilon^\alpha)$ and $\nu'(\epsilon^{\alpha'})$ are the frequency (orientation) of the incoming and outgoing photon, and

$$\nu_{ab} = \frac{E_a - E_b}{h} \,.$$

• Lyman α : $1s \rightarrow 2p \rightarrow 1s$

Figure: Kiehunn Bach, Hee-Won Lee, JKAS 47, no.5, 187(2014)

Kramers-Heisenberg formula

$$\frac{d\sigma}{d\Omega} = r_0^2 \left(\frac{\nu'}{\nu}\right) \left| \delta_{if} \bar{\epsilon}^{\alpha} \bar{\epsilon}^{\alpha'} + \frac{2\pi m_e \nu_{nf} \nu_{ni}}{\hbar} \right| \\ \sum_n \left[\frac{(\vec{x} \cdot \bar{\epsilon}^{\alpha'})_{fn} (\vec{x} \cdot \bar{\epsilon}^{\alpha})_{ni}}{\nu_{ni} - \nu - i\Gamma_n/2} + \frac{(\vec{x} \cdot \bar{\epsilon}^{\alpha})_{fn} (\vec{x} \cdot \bar{\epsilon}^{\alpha'})_{ni}}{\nu_{ni} + \nu'} \right] \right|^2.$$

- Rayleigh Scattering (Elastic): $1s \rightarrow np \rightarrow 1s$
- Raman Scattering (Inelastic): $1s \rightarrow np \rightarrow n's$ or n'd
- Example: $1s \rightarrow 4p \rightarrow$ Final states (1s, 2s, 3s and 3d)

•
$$\sigma(\nu) = \sigma^{Rayleigh}(\nu) + \sum_{f} \sigma_{f}^{Raman}(\nu).$$

• Doppler effect:
$$\nu_{ni} \rightarrow \nu_{ni} \left(1 + \frac{v_z}{c}\right)$$
.

Boltzmann distribution:
$$N(v_z) = \frac{exp(-v_z^2/(2kT/m))}{\sqrt{2\pi kT/m}}$$
.

Outline

Motivation

Voigt Function

Kramers-Heisenberg Formula

Voigt & K-H

Lyman Series:

• Lyman α :

Lyman β:

• Lyman γ :

• Lyman α with $\log N = 13.0$:

• Lyman α with $\log N = 21.6$:

• Lyman β with $\log N = 21.6$:

• Lyman γ with $\log N = 21.6$:

Fitting

•
$$\delta(D/H) \equiv \frac{n_{voigt-fit}}{n_{fid}} - 1$$

- Fitting Region:
 - $\hfill\square$ blue: Ly α Ly14
 - $\hfill\square$ red: Ly α Ly12
 - $\hfill\square$ yellow: Ly α Ly7

Fitting

• Fit the fiducial with Ly α - Ly7

 $\hfill\square$ Left: Lyman 7 ($n=1\rightarrow 8$) with $\log N=20.6$

 \square Right: Lyman 7 ($n = 1 \rightarrow 8$) with $\log N = 21.6$

Summary

Deuterium Abundance

- □ QSO: $D/H = (2.55 \pm 0.03) \times 10^{-5}$
- □ CMB: $D/H = (2.45 \pm 0.05) \times 10^{-5}$

Speed:

- □ Voigt Profile: quick!!
- □ Karmers-Heisenberg: slow!!